M2.C

[1]

[1]

M3.D

[1]

M4. (a) (i) <u>addition</u> of water / steam (1) Ignore "to the reaction"

(ii)	Advantage:	low technology renewable feedstock / resource
		allowed for use in drinks, perfumes considered to be green (1)

any one

NOT "infinite" or "non-finite" resource

Disadvantage:

slow low yield significant land use has to be distilled labour intensive

any one Ignore yeast NOT (unqualified) batch production NOT impure product

3

(b) (i)

Structure of aldehyde

Structure of carboxylic acid

(ii) *Reagent:* sodium (/ potassium) dichromate (VI) (VI not essential) (1) M1

Conditions: acidified or sulphuric acid (1) Can be with reagent M2 (heat under reflux) (1) M3

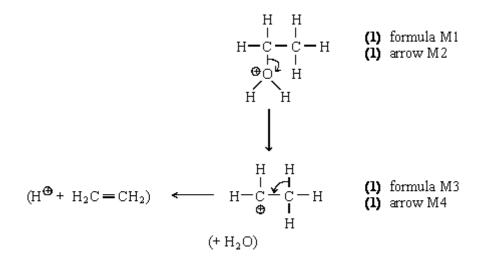
Or correct formula for M1 and M2 M2 depends on M1 (but M2 correct from $Cr_2O_7^{2-}$, $K_2Cr_2O_7^{2-}$ etc M3 mark independent Credit KMnO₄ for M1 Ignore T and P for M2

5

(c) (i)

$$H_3C - CH_3$$

 $H_3C - CH_3$
 OH (1)


(ii)

$$CH_3CH_2 - CH - CH_3$$

 I
 OH (1)

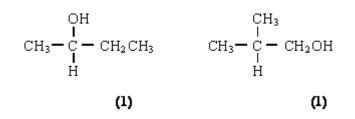
2

(d) (i) Al₂O₃ or H₂SO₄ or H₃PO₄ (1) *Name or formula*

(ii)

For M1 the + can be on O or H if $-OH_2$ used For M2 the arrow must go to the + or to oxygen Synchronous loss without carbocation loses carbocation structure mark; can still score $\frac{3}{4}$ i.e. penalise M3

[15]


5

M5. (a) % O = 21.6 % (1) If % O not calculated only M2 available C $\frac{64.9}{12}$ H $\frac{13.5}{1}$ O $\frac{21.6}{16}$ (1) = 5.41 = 13.5 = 1.35

> Ratio: 4 : 10: 1 (\therefore C₄H₁₀O) (1) If arithmetic error in any result lose M3 If percentage composition calculation done zero

> > 3

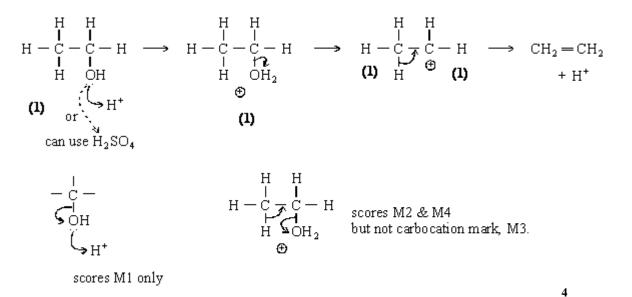
(b) (i) *Type of alcohol*: Tertiary (1) *Reason*: No <u>hydrogen</u> atom on <u>central carbon</u> (1)

(ii) Isomer 3 Isomer 4 Penalise missing bonds / incorrect bonds once per paper

(c) (i) Aldehyde (1)

Ignore named aldehydes or their structures, penalise wrong named compound

- (ii) CH₃CH₂CH₂CH₂OH + [O] → CH₃CH₂CH₂CHO + H₂O (1) Balanced (1)
 C₄H₁₀O is OK as a reactant [O] can be over arrow
 C₃H₇CHO not accepted for product, but C₂H₅CH₂CHO is OK If use C₃ or C₅ compounds no marks in (ii) C.E of wrong alcohol
- (iii) Name Butanoic acid (1) Structure: CH₃CH₂CH₂COOH (1) mark conseq. or as stated


5

4

 (d) Advantage: Fast reaction OR pure product OR continuous process OR cheap on manpower OR high yield, 100% alcohol (1) Disadvantage: High technology OR ethene from non renewable source OR expensive equipment not just costly (1) Not answers based on fermentation

2

(e)

